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Abstract
A path-integral formulation is developed for the thermodynamic properties of a
worm-like chain moving on a surface and laterally confined by a harmonic
potential. The free energy of the chain is calculated as a function of its
length and boundary conditions at each end. Distribution functions for chain
displacements can be constructed by utilizing the Markov property as a function
of displacement φ(s) and its derivative dφ(s)/ds along the path. These
quantities are also calculated in the presence of pinning sites which impose
fixed positive or negative displacements, foreshadowing their application to a
model for the regulation of striated muscle.

PACS numbers: 8235P, 0230R, 0365, 3115K

1. Introduction

The simplest worm-like-chain model of a polymer filament supposes that the polymer can
be treated as a continuous inextensible one-dimensional chain with a finite bending modulus
(Kratky and Porod 1949, Doi and Edwards 1988). This model has been applied to the force-
extension curve of a single biopolymer filament (Marko and Siggia 1995, Tskhovrebova et al
1997, Wang et al 1997), which may show enthalpic and entropic contributions. Path-integral
theories for finite-temperature equilibrium properties of worm-like chains are complicated by
the fact that bending energy is proportional to the square of the second path derivative of
chain position, and specialized methods of calculation have been invented for the purpose
(Papadopoulos and Thomchick 1977, Kleinert 1986).

This paper considers the problem of a worm-like chain moving on a flat surface and
confined to the vicinity of a straight line on that surface by a harmonic potential. This problem
is motivated by a well known mechanism for the regulation of muscle contraction, discussed
briefly at the end of this paper. Let φ(s) be the lateral displacement of the chain at distance s
along the chain (figure 1). The corresponding potential energy functional is assumed to be

E[φ(s)] =
∫ L

0

(κ
2
φ′′(s)2 +

α

2
φ(s)2

)
ds (1.1)
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Figure 1. Schematic drawing of a worm-like chain on a surface and laterally confined near the
zero of the axial potential αφ2/2 as shown, with different displacements φ in the lateral direction
at each point of the chain.

where primes denote differentiation with respect to s and κ is the shear elastic constant per
unit length of chain. The bending energy per unit length is generally proportional to |r′′(s)|2,
which reduces to the first term of the integrand for slowly varying displacements such that1

|φ′(s)| � 1. The second term tends to confine the chain to the vicinity of the straight line
φ(s) = 0, so that the energy of the resting chain is zero. As the chain is assumed to be
inextensible, there is no stretching-energy term.

The partition function and hence the free energy of the chain described by (1.1) is calculated
for fixed boundary conditions at each end. The method of calculation gives the probability
distribution of displacements at any site on the chain, also the joint distribution of displacements
at any number of sites. To apply this model to muscle regulation, formulae are also derived for
the partition function in the presence of an arbitrary distribution of n pinning sites where the
displacement of the chain is fixed. At the molecular level, pinning can be achieved in various
ways considered in the concluding discussion. A key parameter for describing the influence of
pinning sites is the persistence length for the confined chain, which is found to be 1/ξ where

ξ 4 ≡ α/4κ. (1.2)

With the above application in mind, recursive formulae are established for the free energy of
the pinned chain and the distribution of displacements near pinning sites, and illustrated for
the case n = 2.

The path-integral must be calculated by dividing the chain into repeating cells, and defining
a measure which ‘regularizes’ the integral to give a finite result in the limit of zero cell
length. This continuum limit appears to be appropriate for describing thermally excited long-
wavelength distortions of a real polymeric chain, but the consequences should be recognized
before proceeding further. Firstly, the law of equipartition of energy and associated high-
temperature properties obtained from the classical partition function requires a finite number
of degrees of freedom, which should be the total number of atoms in the chain; this statement
appears to require the existence of a unit cell (the monomer) with an atomic basis. In the
continuum limit these degrees of freedom are not thermally excited, but a fully quantum-
mechanical treatment seems inappropriate.

The calculation of thermodynamic properties from the partition function is normally
indifferent to any multiplicative factor, which cancels out of the Boltzmann average. A
weighting factor must be included for each cell of the discretized chain to regularize the
path integral. In this case the weighting factor is temperature-dependent, and the expression
−d lnZ/dβ for internal energy, where β = 1/kBT (kB is Boltzmann’s constant and T is the

1 In terms of coordinates x(s), y(s) parallel and perpendicular to the line of confinement, |r′′(s)|2 ≡ x′′(s)2+y′′(s)2 =
y′′(s)2/(1 − y′(s)2) since ds2 = dx2 + dy2. In the main text, y(s) is replaced by φ(s) and other meanings are given
to the symbols x, y.
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absolute temperature), is correct only if the weighting factor is held constant when taking the
derivative. For the energy function (1.1), equipartition of energy is restored by multiplying the
‘path-integral’ partition function by a factor β−N/2, where N is the total number of degrees
of freedom in the chain, giving the missing internal energy NkBT/2. Nevertheless, the ‘path’
partition function will be used to calculate changes in the number of configurations associated
when the chain is pinned, and hence the change in chain free energy including the entropic
term.

The classical partition function of a confined worm-like chain pinning is formally
analogous to the path-integral for Hamiltonian action of a particle with a quasi-kinetic energy
proportional to (acceleration)2 rather than (velocity)2 and moving in a harmonic potential
(Kleinert 1986). The integration over all chain paths with specified end conditions is replaced
by integrating over all trajectories of the particle in time (Feynman and Hibbs 1965). The pinned
chain can be viewed as a special case of a chain moving in an external position-dependent
potential acting only at pinning sites, analogous to a particle moving in a time-dependent (and
pulsatile) external potential. These problems can be solved by dividing the chain/trajectory
into segments in which the chain/particle moves without external constraints.

2. The confined chain

The partition function of a confined chain of length L may be written as the path integral

Zab =
∫ b

a

exp(−βE[φ(s)])Dφ(s) (2.1)

(β = 1/kBT , kB is Boltzmann’s constant, T is the absolute temperature) which averages over
all possible displacements of the chain between fixed end-points a and b. Following Feynman’s
method, we first obtain the path of minimum energy E0 between these end-points, giving a
factor exp(−βE0) which can be taken outside the path integral; the remaining factor W is
determined by the number of thermally activated paths at higher energy and requires the path
integral to be defined via a discrete representation of the chain.

The path of minimum energy satisfies the extremal condition

δE/κ =
∫ L

0

(
φ′′δφ′′ + 4ξ 4φδφ

)
ds

= [
φ′′δφ′ − φ′′′δφ

]b
a

+
∫ L

0

(
φ(4) + 4ξ 4φ

)
δφ ds = 0 (2.2)

so (
d4

ds4
+ 4ξ 4

)
φ(s) = 0 (2.3)

if φ(s) and its first derivative are fixed at the ends. Most of the ensuing complication stems
from these four boundary conditions, which arise from the form of the bending energy. The
functions

u1(x) = sinh x sin x u2(x) = cosh x sin x

u3(x) = sinh x cos x u4(x) = cosh x cos x
(2.4)

with x = ξs are independent solutions of (2.3). The extremal path can be expressed in terms
of these functions as

φ0(s) =
4∑
k=1

ckuk(ξs) (2.5)
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Figure 2. The most probable displacement φ0(x) of a long chain near one end (x = 0) subject to
fixed values φa , ψa of displacement and its path derivative respectively at the end, as a function
of the reduced path length x = ξs. From equation (2.5) and appendix A, the predicted function
for a chain of length L � 1/ξ is φ0(x) = exp(−x)(sin x + cos x)φa + exp(−x) sin(x)ψa , with
‘overdamped’ behaviour which is relatively insensitive to the ratio ψa/φa . Similar functions are
predicted for the dynamical behaviour of a damped chain (Wiggins et al 1998).

where the coefficients are determined by the boundary values. Explicit expressions for the ck
are given in appendix A. The minimum energyE0 can be obtained from (1.1), since integrations
by parts as before gives

E0 = κ

2

[
φ′′

0 (s)φ
′
0(s)− φ′′′

0 (s)φ0(s)
]L

0 (2.6)

in terms of boundary values only. However, equation (2.5) is required to express the
higher derivatives in terms of φa, φ′

a, φb, φ
′
b. It is convenient to use scaled derivatives

ψa = φ′
a/ξ, ψb = φ′

b/ξ at the boundaries. Thus

E0 = κξ 3
[
A11(φ

2
a + φ2

b) + 2A12(φaψa − φbψb) + A22(ψ
2
a + ψ2

b ) + B11φaφb

+B12(φaψb − ψaφb) + B22ψaψb
]

(2.7)

or in terms of 2 × 2 matrices,

E0 = κξ 3
{
�aA�a +�bA

S�b +�aB�b
}

(2.8)

where

Φa =
(
φa

ψa

)
Φb =

(
φb

ψb

)
(2.9)

and A is symmetric, B antisymmetric. AS is the skew complement of A, whose off-diagonal
elements are reversed in sign. In passing, note that BS is the transpose of B. The coefficients
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are functions of the scaled chain length X = ξL, namely

A11 = 2
sinhX coshX + sinX cosX

d(X)
B11 = −4

sinhX cosX + coshX sinX

d(X)

A12 = sinh2X + sin2X

d(X)
B12 = 4

sinhX sinX

d(X)

A22 = sinhX coshX − sinX cosX

d(X)
B22 = 2

coshX sinX − sinhX cosX

d(X)

(2.10)

where d(X) = sinh2X − sin2X. For X � 1, the elements of A tend to finite positive values
while those of B tend to zero, so that the boundary conditions at each end act independently
on the chain. The path of minimum energy then tends to zero displacement in the interior,
with independent matching to the boundary conditions at each end. Figure 2 shows that this
behaviour depends on the boundary value of the derivative; the damped oscillatory decay is
characteristic of the confined bending chain.

Asymptotic forms as X → 0 can also be obtained. In this limit the leading term in the
energy is independent of ξ , and can be interpreted either as the behaviour of a very short chain
at finite ξ or an unconfined chain (ξ = 0) of any length. The minimal energy of such a chain
is

E0 = 2κ

L

{
3

(
φb − φa
L

)2

− 3
φb − φa
L

(φ′
a + φ′

b) + φ′2
a + φ′

aφ
′
b + φ′2

b

}
(2.11)

which arises from bending only, and the corresponding path is the cubic polynomial

φ0(s) = φa + φ′
as +

(
3
φb − φa
L

− 2φ′
a − φ′

b

)
s2

L
+

(
φ′
a + φ′

b − 2
φb − φa
L

)
s3

L2
(2.12)

which describes the bending of a loaded cantilever (Southwell 1936). Note that when
φ′
a = φ′

b = (φb − φa)/L, the minimal path is a straight line and E0 = 0.
The contribution of thermally activated chain configurations to the partition function is

given by a factor of the same form as (2.1), where the chain path is replaced by its fluctuating
part δφ(s); this is true for any quadratic energy functional (Feynman and Hibbs 1965). For
this problem, δφ(s) = δφ′(s) = 0 at s = 0 and L. To define the path integral, the chain must
now be discretized to convert (2.1) into a multiple integral of finite dimensions: at this point
it is sufficient to consider the simpler case of the unconstrained chain (α = 0). Once the path
integral is regularized, the solution for the harmonically constrained chain can be obtained by
Feynman’s method.

Let the chain be divided into N cells each of length ε ≡ L/N , and assign fluctuating
displacements δφn to sites sn = nε for n = (0, N). At the ends, δφ0 = δφN = 0. Discrete
analogues of zero displacement derivatives at each end are incorporated by allowing two more
sitesn = −1, N+1 with zero displacements. Dropping the ‘δ’ prefix, the discretized fluctuation
energy is now

EN = κ

2ε3

N∑
n=0

{
(φn−1 − 2φn + φn+1)

2 + 4ε4ξ 4φ2
n

}
(2.13)
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or (κ/2ε3)�N−1MN−1�N−1 in terms of a displacement vector (φ1, . . . , φN−1) and the matrix

MN =




6 + λ −4 1 0
−4 6 + λ −4 1

1 −4 6 + λ −4 1

· · · · ·
· · · · ·

· · · ·
0 1 −4 6 + λ



N

(2.14)

with λ = 4(εξ)4. The path differential is defined as the limit for large N of the multiple integral

DNφ ≡ ε−µ
∫ N−1∏

n=1

dφn
Cεν

(2.15)

so that the fluctuating factor for equation (2.2) is (Doi and Edwards 1988)

WN =
∫
DNφ exp

(
− βκ

2ε3
�N−1MN−1�N−1

)

= ε−µ
(

2ε3−2ν

βκC2

)(N−1)/2 (
πN−1

|MN−1|
)1/2

(2.16)

requiring the determinant of (2.14).
For the unconfined chain (λ = 0), this determinant can be evaluated as (see appendix B)

|MN−1| = N4/12 + O(N3). (2.17)

The path-integral remains finite in the limit ε → 0, N → ∞ at fixed L iff

µ = 2 ν = 3
2 C = (2π/βκ)1/2 (2.18)

giving W = 2
√

3/L2 in the limit. This ‘regularization’ of the path integral should remain
valid for the confined chain, as expected when adding a potential term (Brush 1961).

The third and final step is to calculate W for the confined chain, using the same
regularization. Various analytic methods are available (Kleinert 1995, Grosche and Steiner
1998), but they usually revert to some form of eigenvalue problem. An alternative approach is
to seek a composition law for the partition function by joining two chains end to end, as used by
Feynman for particle trajectories. Figure 3 shows how this can be done for discretized chains
so that their displacements at the join define a common boundary value of the path derivative.
If the partition functions of the separate chains are

ZM(φ−1, φ0, φM, φM+1) =
∫
DMφ exp(−βEM [φ])

ZN(θ−1, θ0, θN , θN+1) =
∫
DNθ exp(−βEN [θ ])

(2.19)

where φM ≡ θ−1, φM+1 ≡ θ0, the partition function of the combined chain is

ZM+N+1(φ−1, φ0, θN , θN+1) =
∫
DM+N+1(φ, θ) exp(−β{EM [φ] + EN [θ ]})

= ε−2
∫ M−1∏

m=1

dφm
Cε3/2

∫
dφM
Cε3/2

∫
dθ0

Cε3/2

∫ N−1∏
n=1

dθn
Cε3/2

exp(−β{EM [φ] + EN [θ ]})

= 1

C2ε

∫ ∫
dφM dθ0 ZM(φ−1, φ0, φM, θ0)ZN(φM, θ0, θN , θN+1).



Path-integral theory of an axially confined worm-like chain 4513

Figure 3. The combination of two chains showing their discrete representations containing M
and N cells. Displacements external to these chains are defined at each end and their join so that
boundary values of displacement derivative along the path are defined in the limit of zero cell size.

The limit ε → 0 can be taken after replacing one integration by an integral over the derivative
φ′
c ≈ (θ0 − φM)/ε, which gives the desired composition law,

Z(φa, φ
′
a;φbφ′

b) = 1

C2

∫ ∫
dφc dφ′

c Z(φa, φ
′
a;φcφ′

c) Z(φc, φ
′
c;φbφ′

b). (2.20)

This result provides the basis for constructing partition functions and displacement
distributions, with or without pinning sites.

Using condensed notation and setting, for example Zab = W(Xab) exp(−βEab) where
Xab = ξ(sb − sa), equation (2.20) generates a similar identity

W(X + Y )

W(X)W(Y )
= ξ

C2

∫
d2�c exp(−β{Eac + Ecb − Eab}) (2.21)

for the fluctuation factors, using scaled path derivatives and the vector (2.9). The exponent
can be constructed from the basic energy formula (2.8), showing that the boundary vector has
a bi-variate Gaussian distribution. The standard integral

I =
∫

d2u exp(−{uHu + 2u · b}) = π

|H|1/2 exp(bH−1b) (2.22)

is repeatedly required. In this case,

H(X, Y ) = AS(X) + A(Y ) b = 1
2 (B

S(X)ua + B(Y )ub) (2.23)

and

ua =
√
βκξ 3�a ub =

√
βκξ 3�b (2.24)

are dimensionless displacement vectors. The identities

1
4B(X)H(X, Y )−1BS(Y ) ≡ A(X)− A(X + Y )

1
4BS(Y )H(X, Y )−1B(Y ) ≡ AS(Y )− AS(X + Y )

1
2B(X)H(X, Y )−1B(Y ) ≡ −B(X + Y )

(2.25)

are also helpful. In this way one finds the composition relation

W(X)W(Y )

W(X + Y )
= βκξ 2C2

π
|H(X, Y )|1/2 (2.26)
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which can be solved forW(X) by developing a differential equation. The solution is

W(X) =
√

2βκξ 2C2/π√
sinh2X − sin2X

(2.27)

where the numerator is 2
√

2ξ 2 on using (2.18) forC. The previous result 2
√

3/L2 is recovered
when X ≡ ξL � 1. In the opposite limit of a long chain,W(X) ≈ 4

√
2ξ 2 exp(−ξL).

The ‘path’ free energy of the chain with prescribed boundary conditions may be defined
in the usual way as

Fab ≡ −kBT lnZab = Eab(φa, φ
′
a, φb, φ

′
b)− kBT lnW(Xab). (2.28)

However, thermodynamic formulae Uab ≡ −d(lnZab)/dβ and Sab ≡ (Uab − Fab)/T for
internal energy and entropy are correct only if the (temperature-dependent) regularization
constant C is held constant, and the substitution (2.18) made after taking the β-derivative.
Thus Uab = Eab − kBT , in which thermally excited degrees of freedom are missing. The
second term is associated with fixed displacements at each end; on using periodic boundary
conditions (�a = �b) and integrating the partition function over this vector, two extra degrees
of freedom are supplied and the ‘path’ internal energy becomes the ground-state energy Eab.
This energy can be used as a reference for calculating changes in internal energy produced by
pinning the chain. The same utilitarian interpretation also applies to the ‘path’ entropy, which
is kB(lnW(Xab) − 1) for the chain with fixed ends or kB lnW(Xab) with periodic boundary
conditions.

3. Distributions of displacements

Under thermal-equilibrium conditions, the distribution of lateral displacements of the chain
can be constructed using the methods of the last section. It is necessary to start with the joint
distribution of displacement φ and its path derivative φ′, which can be treated as independent
variables. Let P(�1) be the joint probability distribution of φ and the scaled derivative ψ at
position s1 on a chain of lengthL. Similar joint distributionsP(�1, . . . , �n) can be defined for
any number n of sites on the chain. Denoting the ends by a, b as before, repeated applications
of the composition law (2.20), or in condensed form

Zab = βκξ

2π

∫
d2�1 Za1Z1b (3.1)

using (2.18) for C, allows all distributions to be written down, for example

P(�1) = βκξ

2π

Za1(�a,�1)Z1b(�1,�b)

Zab(�1,�b)

P (�1,�2) =
(
βκξ

2π

)2
Za1(�a,�1)Z12(�1,�2)Z2b(�2,�b)

Zab(�1,�b)
.

(3.2)

Equation (3.1) confirms that these distributions are normalized to unity. For a long chain
(ξL � 1), the one-site distribution at an interior site (several persistence lengths from either
end) should be independent of the boundary displacements, and the two-site distribution should
depend only on the separation s12 between the sites.

Explicit formulae are simplified by using the dimensionless displacement vector u =
(βκξ 3)1/2� with components (u, v), so

Zab = W(Xab) exp(−[uaA(X)ua + uaB(X)ub + ubA
S(X)ub]). (3.3)
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At any interior point of a long chain, the one-site distribution with respect to u is

p(u) =
√

8

π
exp(−(4u2 + 2v2)) (3.4)

the product of Gaussian distributions in u and v with standard deviations of 1/
√

8 and 1
2 ,

respectively. For two interior sites, the analogous joint distribution is

p(u1,u2) =
√

8

π2
|G(x)|1/2 exp(−(u1G(x)u1 + u1B(x)u2 + u2G

S(x)u2)) (3.5)

where x ≡ ξs12 and G(x) ≡ H(∞, x) as in (2.23). With the aid of (2.25), it can be shown that
p(u1) is recovered on integrating over u2. When x → 0, p(u1,u2) ≈ p(u1)δ(u1−u2)where
δ(u) is a product of Dirac delta functions in u and v. The dependence on site distance is not
very transparent, but when x � 1 the matrix B becomes vanishingly small and independent
distributions are recovered, namely p(u1,u2) ≈ p(u1)p(u2).

The two-site distribution for displacements only is obtained from (3.5) by integrating
over v1, v2. This produces another bi-variate Gaussian distribution for the dimensionless
displacements u1, u2, with similar behaviour as a function of x. The same information
is contained in the conditional distribution p(u2|u1) ≡ p(u1, u2)/p(u1), where p(u) =
(2/

√
π) exp(−4u2) is the one-site distribution. Hence

p(u2|u1) =
(
C1(x)

π

)1/2

exp

(
−C1(x)

(
u2 +

C2(x)

C1(x)
u1

)2)
(3.6)

where

C1 = G11 − G22(4G2
12 + B2

12)− 2B22G12B12

4G2
22 − B2

22

2C2 = B11 +
8G22G12B12 − B22(4G2

12 + B2
12)

4G2
22 − B2

22

(3.7)

and the identity C2
1 − C2

2 ≡ 4C1 ensures correct normalization. As a function of reduced
separation x, the mean and variance of the distribution of u2 are

u2(x|u1)

u1
≡ R(x) = −C2(x)

C1(x)

u2
2(x|u1)− (u2(x|u1))

2 ≡ S(x) = 1

2C1(x)

(3.8)

starting from u1 at x = 0. After some manipulation of symbols,

R(x) = exp(−x)(cos x + sin x)

S(x) = 1
8 {1 − exp(−2x)(1 + sin 2x)}. (3.9)

The quantity R is also the cross-correlation function of the joint distribution. These universal
functions of x are plotted in figure 4. As a function of u2, the distribution (3.6) evolves from
a delta function localized at u1 when x = 0 to the symmetric one-site Gaussian distribution
when x � 1, analogous to the Ornstein–Uhlenbeck solution of the Fokker–Planck equation
for the time behaviour of a harmonically bound Brownian particle (Chandrasekhar 1943).

The composition law (3.1) can be viewed more generally as a form of the Chapman–
Kolmogorov equation for stochastic processes (Gardner 1985), which implies that the
transmission of probabilities down the chain is a Markov process in the two-dimensional vector
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Figure 4. Mean chain displacement R(x) from equation (3.9) at distance x (measured in units of
1/ξ ) from a point of known displacement, expressed as a ratio of the latter as in equation (3.8).
S(x) is the displacement variance at this point. When x increases above unity, memory of the
imposed displacement is lost and the variance grows to its normal value of 1

8 . The results confirm
that 1/ξ defines the persistence length of the confined chain.

u(s). If p(1, . . . , n) denotes a joint n-site distribution in these vectors, the corresponding form
Zab = ρ

∫
d2u1 Za1Z1b of (3.1), where ρ = (2πξ 2)−1, generates conditional distributions

p(3|12) ≡ p(123)

p(12)
= ρ3Za1Z12Z23Z3b

ρ2Za1Z12Z2b
= ρ

Z23Z3b

Z2b

p(3|2) ≡ p(23)

p(2)
= ρ2Za2Z23Z3b

ρZa2Z2b
= ρ

Z23Z3b

Z2b
.

(3.10)

Thus p(3|12) = p(3|2). In general, one can show that if (vectorial) displacements are given
at n positions along the chain, the distribution of displacement at a site further ahead depends
only on the displacement at the nearest preceding site, so

p(n + 1|1, 2, . . . , n) = p(n + 1|n) (3.11)

if the sites are indexed by path position. An equivalent statement must hold if all given
displacements are further down the chain, since the energy functional is invariant if path
lengths are measured from the other end. If displacements are specified on both sides of a
site, the distribution of displacements at that site does not simplify; the above method does
not allow p(2|13) to be expressed in terms of p(2|1) or p(2|3). This result is also true for
continuous Markov processes in time: however, double-sided predictions with respect to past
and future are usually not required.

4. The pinned chain

If a chain described by the energy functional (1.1) is pinned to the substrate at various points
along its length, the same functional applies to each chain segment between adjacent pinning



Path-integral theory of an axially confined worm-like chain 4517

sites, which provide boundary conditions for the segment. Let the chain be pinned atn positions
s1 < s2 < · · · < sn along its path, with fixed displacements φP 1, . . . , φPn. For simplicity,
the first derivative of displacement is not considered to be pinned, so each pinning site puts
a smooth kink in the path of minimum energy. We seek to calculate the free energy of the
pinned chain, also the distribution of chain displacement away from pinning sites. The internal
energy is a quadratic function of the pinning displacements, equal to 4κξ 3φ2

P per pinning site
if the sites are well separated. If the separation between two pinning sites is reduced below the
persistence length 1/ξ , the kinks are merged with a decrease or increase in energy according
to whether the pinning displacements have the same or opposite signs.

LetZ(n)ab (�a,�b)be the partition function for the chain with specified displacement vectors
at the ends a, b and pinned as above at n sites. The composition law (equations (2.20) and
(3.1)) suggests the recursion

Z
(n)
ab (�a,�b) = ξ

C2

∫
dψn Z

(n−1)
an (�a,�n)Znb(�n,�b) (4.1)

whereφn = φPn. When n = 1, the partition functions of the integrand describe unpinned chain
segments and (3.1) is recovered on integrating out the pinning constraint. The dimensionless
displacement vectors u = (βκξ 3)1/2� and equation (3.3) are used for explicit calculations.
For any number of sites, the integral is of the form

J (u) =
∫

dv exp(−{uHu + 2u · b})

=
(
π

H22

)1/2

exp

(
−
(
H11 − H 2

12

H22

)
u2 − 2

(
b1 − H12

H22
b2

)
u +

b2
2

H22

)
(4.2)

where u = (u, v). The case n = 1 can be worked explicitly from (3.3), giving a multi-
variate Gaussian distribution in�a,�b biased by the pinning site. This form of distribution is
maintained for any number of pinning sites, namely

Z
(n)
ab (�a,�b) = ζ

(n)
ab W(Xab)

× exp
(−[uaA

(n)
ab ua + uaB

(n)
ab ua + ubC

(n)
ab ub + a

(n)
ab · ua + c

(n)
ab · ub]

)
(4.3)

where the matrices A,B,C and vectors a, c are functions of the reduced chain lengthXab, the
number of sites and their reduced separations xa1, x12, . . . , xnb. The first factor is a fugacity
and will be written as

ζ
(n)
ab = w

(n)
ab exp(−;E(n)ab /kBT ) (4.4)

where the pinning displacements appear only in;E(n)ab . Recursive relations for these quantities
are generated by substituting in (4.1). Only a closed subset of these formulae are exhibited,
namely

C
(n)
ab = AS(xnb)− BS(xnb)P2B(xnb)

4H(n)
22

(4.5a)

c
(n)
ab = BS(xnb)

(
e1 − H

(n)
12

H
(n)
22

e2

)
uPn − BS(xnb)P2c

(n−1)
an

2H(n)
22

(4.5b)

w
(n)
ab =

(
βκξ 3

π

)1/2
(

|H(xan, xnb)|
H
(n)
22

)1/2

w(n−1)
an (4.5c)

;E
(n)
ab −;E(n−1)

an

kBT
=
(
H
(n)
11 − H

(n)2

12

H
(n)
22

)2

u2
Pn +

(
c
(n−1)
1 − H

(n)
12

H
(n)
22

c
(n−1)
2

)
uPn − c

(n−1)2

2

4H(n)
22

(4.5d)
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where

H
(n)
ab ≡ C(n−1)

an + A(xnb). (4.5e)

The regularization constantC does not appear, since the factor 1/C2 in (4.1) is removed on using
(2.26). Starting formulae are C

(0)
a1 = AS(xa1), c

(0)
a1 = 0, ζ (0)a1 = 1, so H

(1)
ab ≡ H(xa1, x1b) as

in (2.23). To save space, subscripts for the ends of the chain or chain segment are omitted
when listing elements of matrices or vectors; thus H(n)

ij ≡ (H
(n)
ab )ij refers to the whole chain

but c(n−1)
i ≡ (c(n−1)

an )i according to (4.1). e1 ≡ (1, 0) and e2 ≡ (0, 1) are unit vectors and

P2 = ( 0 0

0 1

)
. As explained below, recursions for the remaining parameters are not required as

they relate to the left-hand boundary a which is not replaced in (4.1).
It is now assumed that the chain is much longer than the persistence length and all pinning

sites are similarly remote from the left-hand end (X, xa1 � 1). In this limit A
(n)
ab ≈ ( 2 1

1 1

)
and B

(n)
ab ,a

(n)
ab ≈ 0 for all n. The same assumption is required with respect to the right-hand

end b, but cannot be imposed until the recursions (4.5) are exhausted. Then the matrix/vector
coefficients in (4.3) revert to their values for the unpinned chain, and the change in the partition
function produced by pinning is accounted for by the fugacity ζ (n)ab . The corresponding change
in free energy is

;F
(n)
ab = ;E

(n)
ab − kBT lnw(n)ab . (4.6)

The first term is a quadratic function of the pinning displacements, say

;E
(n)
ab = 4κξ 3

n∑
i=1

n∑
j=i+1

>
(n)
ij (x)φP iφPj . (4.7)

where the dimensionless coefficients >(n)ij are functions of the reduced site spacings x =
(x12, . . . xn−1,n) between pinning sites, scaled so that >(n)ij ≈ δij when all separations are much
greater than the persistence length (xij � 1). Recursions for these quantities can be extracted
from (4.5d). All results apply only to sites in the interior of a long chain, which do not interact
with end displacements.

By way of illustration, consider the lowest-order cases. For one pinning site, ;E(1) =
4κξ 3φ2

P 1 and w(1) = (4κξ 3/πkBT )
1/2. The changes in internal energy and entropy can be

deduced thermodynamically; because w(1) is temperature-dependent the internal energy is
equal to;E(1)−kBT /2, which can be understood as a loss of one degree of freedom produced
by pinning.

For two interior sites, the change in free energy depends on their reduced separation
x ≡ ξ(s2 − s1). Explicit formulae for this case are

4>11 = G11 − G2
12

G22
− [B12 − (G12/G22)B22]2

4H(2)
22

(4.8a)

4>12 =
(
B11 +

G12

G22
B12

)
− H

(2)
12

H
(2)
22

(
B12 − G12

G22
B22

)
(4.8b)

4>22 = H
(2)
11 − H

(2)2

12

H
(2)
22

(4.8c)

where the dependence on x is suppressed and G(x) = H(∞, x) as before. Although the
symmetry is not apparent in the formulae, >11(x) ≡ >22(x) as expected. Figure 5 shows
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Figure 5. The energies >S(x) = 2>(2)11 + >(2)12 , >A(x) = 2>(2)11 − >
(2)
12 of two pinning sites

(equations (4.7) and (4.8), appendix C) as a function of their reduced separation x, for symmetric
and antisymmetric pinning respectively (reduced displacements uP 1 = 1, uP 2 = ±1). At
large separations (x � 1) the energy cost is twice that with one pinning site. When the two
sites merge (x → 0), they behave as one if the pinned displacements are equal, but there
is a large energy cost (diverging as x−2) for equal and opposite pinnings. The configuration
factor ?(x) ≡ (π/4βκξ3)w(2)(x) tends to unity at large x and is independent of the pinning
displacements.

the resulting ‘two-kink’ energy as a function of site spacing for symmetric (φP 2 = φP 1)

and antisymmetric (φP 2 = −φP 1) sites, also a function ?(x) proportional to the common
configuration factor w(2).

A related calculation can also describe how chain configurations are altered by pinning.
Consider the distribution of displacements at a fixed position down the chain. Denote this
position by c and the left- and right-hand ends by a and b as in figure 2. The composition law
and the same recursion relations can be used to build the distributionP (mn)(Φc) of displacement
vector Φc = (φc, ψc), with m pinning sites to the left and n to the right of point c. To build
partition functions in the same way for the segments ac and cb, it is necessary to measure path
distances from each end towards the middle and index the pinning sites in the same way, so
that the sites nearest point c are indexed by m and n, respectively. Thus

P (mn)(Φc) ∝ Z(m)ac (Φa,Φc)Z
(n)
bc (Φb, �Φc) (4.9)

where �Φc = (φc,−ψc). Again specializing to the interior of a long chain, we find that the
reduced vector uc is distributed as exp(−{ucQ(mn)uc + q(mn) · uc}), where

Q(mn) = C(m)
ac + C

(n)S

bc q(mn) = c(m)ac + �c(n)bc . (4.10)

It remains to integrate out the distribution over the second component of uc. Thus

p(mn)(u) ∝ e−(Q(mn)11 u2+q(mn)1 u)

∫
dv e−{Q(mn)22 v2+(2Q(mn)12 u+q(mn)2 )v} (4.11)

which yields a shifted Gaussian distribution for the reduced displacement u at point c.
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Figure 6. Mean chain displacement at a point between two pinning sites, separated by reduced
distances x and y from the point in question, for (a) symmetric and (b) antisymmetric pinning
as described in figure 5. When both pinning sites are remote (x, y � 1) the mean displacement
tends to zero as in an unpinned chain. When one pinning site is near (x or y � 1), the mean
displacement is close to the corresponding pinning value. When both sites are near, no conflict
arises if the pinned displacements are equal (a), but when they are opposed (b), the mean value is
very sensitive to small changes in their positions and x = y = 0 is a singular point of the function.
To show this, the second figure has been rotated about a vertical axis.

The mean and variance of this distribution are, respectively,

u(mn) = −1

2

q
(mn)
1 − (Q(mn)12 /Q

(mn)
22 )q

(mn)
2

Q
(mn)
11 −Q(mn)212 /Q

(mn)
22

S(mn)
2 = 1

2 (Q
(mn)
11 −Q(mn)212 /Q

(mn)
22 )−1.

(4.12)

All quantities are functions of the reduced distances xmc, ync from c to the nearest pinning
sites m and n to left and right, respectively, and the spacings between these and more distant
sites.

These quantities are shown in figures 6 and 7 for the case m = n = 1 as a function of the
reduced distances x and y to the pinning site on each side. The unbiased distribution found
for the unpinned chain, with a standard deviation of 1/

√
8, is found when x, y � 1. The

distribution in the presence of just one site is revealed by removing the other site to a large
distance. The mean displacement is controlled by the two pinning displacements, for example
equal or opposite as shown in figure 6, whereas the variance is reduced close to a pinning site
and its behaviour is independent of the pinning displacements.

5. Discussion

The problem of the harmonically confined worm-like chain is suggested by a form of the steric
blocking model (Haselgrove 1973, Huxley 1973) for muscle regulation. Muscular contraction
produced by binding of the motor-protein myosin to each thin filament (a double helix of
actin) in striated muscle is regulated by the positions of a second filament (tropomyosin),
which appears to span the thin filament. In this context, the worm-like chain is identified
with the tropomyosin filament, which is though to roll on the surface of the actin filament
to regulate myosin binding. A confining potential as a function of rolling angle will keep
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Figure 7. The displacement variance at a point between two pinning sites, as described in figure 6.
This function is independent of the pinned displacements, and shrinks to zero (as x2) when the
point in question moves towards either pinning site.

this filament loosely aligned with the groove of the actin double-helix; related models have
been proposed by Hill (1981). Although the topology of this surface is S1 × R1 rather than
R2, a harmonic potential can prevent the tropomyosin chain from rolling too far away from
the groove, so its rolling angle φ(s) can be interpreted as the displacement of the present
model.

The chain can be selectively pinned if molecules permanently attached to the chain can bind
to bound to the surface of the thin filament. Through the molecule troponin, this mechanism
is thought to be the basis of calcium-dependent muscle regulation (for example, Gagne et al
1995). Myosin molecules, which are never attached to the chain, can also impose localized
constraints on chain configurations by binding to the thin filament, although the constraint
is slightly less severe than pinning. The interplay between these two types of constraints is
expected to form the basis of a cooperative theory of muscle regulation. This application of
the model will be discussed elsewhere.

Alternative mathematical approaches to the solution of the path integral problem have
already been mentioned. In particular, the composition relation (2.20) may be avoided if the
eigenfunctions of (2.14) are known. In this respect the method of Davis and Southern (1997),
which provides the inverse of (2.14), may be helpful.
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Appendix A. The coefficients ck

The coefficients of the minimum path in (2.5) are obtained by fitting this function to the
boundary displacements φa , φb and their derivatives, giving


c1

c2

c3

c4


 =




U11 U12 U13 U14

U21 U22 U23 U24

−U21 1 − U21 −U23 −U24

1 0 0 0






φa

ψa

φb

ψb


 (A.1)

where

U11 = cos2X − cosh2X

d(X)
U21 = sinhX coshX + sinX cosX

d(X)

U12 = sinX cosX − sinhX coshX

d(X)
U22 = sinh2X

d(X)

U13 = 2 sinhX sinX

d(X)
U23 = sinhX cosX + coshX sinX

d(X)

U14 = sinhX cosX − coshX sinX

d(X)
U24 = sinhX sinX

d(X)

(A.2)

and d(X) = sinh2X − sin2X as before. These results are required to obtain (2.10).

Appendix B. The determinant of (2.14) with λ = 0

For λ = 0, the matrix (2.14) is closely related to the square of the matrix for an energy term
involving the first path derivative, as


2 −1 0
−1 2 −1

· · ·
· · ·

−1 2 −1

0 −1 2




2

=




5 −4 1 0
−4 6 −4 1

1 −4 6 −4 1

1 −4 6 −4 1

1 −4 6 −4

0 1 −4 5




(B.1)

differs from (2.14) only in the first and last diagonal entries. The determinant is (N + 1)2

(Kleinert 1995) if the matrix is N × N . Let DN be the determinant of (2.14) and EN the
determinant of this matrix with either the first or last diagonal entry equal to 6. Two Laplace
expansions (Aitken 1956), starting with that of DN about (B1), gives

DN = (N + 1)2 + 2EN−1 +DN−2

EN−1 = N2 + EN−2.
(B.2)

Hence EN−1 = N(N + 1)(2N + 1)/6 and DN − DN−2 = (N + 1)(2N2 + 4N + 3)/3, with
starting values D1 = 6,D2 = 20. Hence

DN ≈ N4/12 + O(N)3. (B.3)

Thus changing the boundary diagonals from 5 to 6 changes the determinant profoundly, from
O(N2) to O(N4). This adjustment arises from the need to specify displacement derivatives at
each end, without which the finite-difference terms in (2.13) could be restricted to the range
n = (1, N − 1).
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Appendix C. Formulae for two-site pinning energies

The coefficients in (2.17) generate the functions >S(x) = 2>(2)11 (x) + >(2)12 (x) and >A(x) =
2>(2)11 (x)−>(2)12 (x) for the energy of the chain pinned at two sites at reduced separation x, with
either symmetric or antisymmetric pinning (uP 2/uP 1 = 1,−1, respectively). Explicit forms
for these functions are NS(x)/D(x), NA(x)/D(x), where

NS(x) = 4(−3 sinh x sin x + 2 cosh 2x − cosh 4x + sin x cosh 3x + cos x cosh 3x + 2 sinh 2x

− sinh 4x + cos x sinh 3x − cosh 2x cos 2x + sin x sinh 3x + cosh 2x sin 2x

+ cosh x cos 3x + sinh x cos 3x − 2 sinh x cos x − 3 cosh x sin x

− cos 2x sinh 2x + sin 2x sinh 2x − 2 cosh x cos x)

NA(x) = 4(3 sinh x sin x + 2 cosh 2x − cosh 4x − sin x cosh 3x − cos x cosh 3x + 2 sinh 2x

− sinh 4x − cos x sinh 3x − cosh 2x cos 2x − sin x sinh 3x + cosh 2x sin 2x

− cosh x cos 3x − sinh x cos 3x + 2 sinh x cos x + 3 cosh x sin x

− cos 2x sinh 2x + sin 2x sinh 2x + 2 cosh x cos x)

D(x) = −2 cosh 4x + 6 cosh 2x − 5 − 2 sinh 4x + 6 sinh 2x − 2 cosh 2x cos 2x + 2 cos 2x

+4 cosh 2x sin 2x − 6 sin 2x − 2 cos 2x sinh 2x + 4 sin 2x sinh 2x

+ cos 4x + sin 4x.
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